SMARIS IoT Watchdog payload description

LORA Dallas payload, valid for FW version v.1.02

Payload length = 50 bytes, all values in HEX

Byte 1:	Device FW version, 0x65 = 101 aka FW version 1.01	1 byte
Bytes 2 to 9:	RTC values, reserved for future use	8 bytes
Bytes 10 to 11: Bytes 12 to 13: Bytes 14 to 15:	SHT-31 humidity, raw sensor data SHT-31 temperature, raw sensor data SHT-31 status, reserved for future use	2 bytes 2 bytes 2 bytes
Bytes 16 to 23: Bytes 24 to 25:	DALLAS 18B20, sensor 1, unique ID (0x28b84f970a000033) DALLAS 18B20, sensor 1, temperature, raw sensor data	8 bytes 2 bytes
Bytes 26 to 33: Bytes 34 to 35:	DALLAS 18B20, sensor 2, unique ID (0x280bcf960a000029) DALLAS 18B20, sensor 2, temperature, raw sensor data	8 bytes 2 bytes
Bytes 36 to 47:	reserved for future use	12 bytes
Byte 48:	Device status byte	1 byte
Bytes 49 to 50:	reserved for future use	2 bytes

SHT-31 humidity and temperature calculation (Datasheet PDF link):

Relative humidity conversion formula (result in %RH):

$$RH = 100 \cdot \frac{S_{RH}}{2^{16} - 1}$$

Temperature conversion formula (result in °C & °F):

$$T \left[{^{\circ}C} \right] = -45 + 175 \cdot \frac{S_T}{2^{16} - 1}$$

$$T [^{\circ}F] = -49 + 315 \cdot \frac{S_T}{2^{16} - 1}$$

 S_{RH} and S_{T} denote the raw sensor output for humidity and temperature, respectively. The formulas work only correctly when S_{RH} and S_{T} are used in decimal representation.

DS18B20

Programmable Resolution 1-Wire Digital Thermometer

The DS18B20 output temperature data is calibrated in degrees Celsius; for Fahrenheit applications, a lookup table or conversion routine must be used. The temperature data is stored as a 16-bit sign-extended two's complement number in the temperature register (see Figure 4). The sign bits (S) indicate if the temperature is positive or negative: for positive numbers S = 0 and for negative numbers S = 1. If the DS18B20 is configured for 12-bit resolution, all bits in the temperature register will contain valid data. For 11-bit resolution, bit 0 is undefined. For 10-bit resolution, bits 1 and 0 are undefined, and for 9-bit resolution bits 2, 1, and 0 are undefined. Table 1 gives examples of digital output data and the corresponding temperature reading for 12-bit resolution conversions.

Operation—Alarm Signaling

After the DS18B20 performs a temperature conversion, the temperature value is compared to the user-defined two's complement alarm trigger values stored in the 1-byte T_H and T_L registers (see $\underline{\text{Figure 5}}$). The sign bit (S) indicates if the value is positive or negative: for positive numbers S = 0 and for negative numbers S = 1. The T_H and T_L registers are nonvolatile (EEPROM) so they will retain data when the device is powered down. T_H and T_L can be accessed through bytes 2 and 3 of the scratchpad as explained in the $\underline{\textit{Memory}}$ section.

Only bits 11 through 4 of the temperature register are used in the T_H and T_L comparison since T_H and T_L are 8-bit registers. If the measured temperature is lower than

	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
23	22	21	20	2-1	2-2	2-3	2-4
BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8
S	S	S	S	S	26	25	24
	BIT 15	BIT 15 BIT 14	BIT 15 BIT 14 BIT 13	BIT 15 BIT 14 BIT 13 BIT 12	BIT 15 BIT 14 BIT 13 BIT 12 BIT 11	BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10	BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9

Figure 4. Temperature Register Format

Table 1. Temperature/Data Relationship

TEMPERATURE (°C)	DIGITAL OUTPUT (BINARY)	DIGITAL OUTPUT (HEX)	
+125	0000 0111 1101 0000	07D0h	
+85*	0000 0101 0101 0000	0550h	
+25.0625	0000 0001 1001 0001	0191h	
+10.125	0000 0000 1010 0010	00A2h	
+0.5	0000 0000 0000 1000	0008h	
0	0000 0000 0000 0000	0000h	
-0.5	1111 1111 1111 1000	FFF8h	
-10.125	1111 1111 0101 1110	FF5Eh	
-25.0625	1111 1110 0110 1111	FE6Fh	
-55	1111 1100 1001 0000	FC90h	

^{*}The power-on reset value of the temperature register is +85°C.

Device status byte:

0x80-IoT Watchdog, device powered from external supply0x40-IoT Watchdog, device powered from the 3,7 V onboard battery